
Self-similar solutions for a coupled system of nonlinear Schrodinger equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2649

(http://iopscience.iop.org/0305-4470/25/9/034)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 25 (1992) 2649-2667. Printed in the UK 
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Schrodinger equations 

L Gagnon 
Centre dOptique, Phatonique et Laser, Depanement de  Physique, Universite Laval, 
Ste-Foy (Quebec), Canada G I K  7P4 
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Abstract. This work is devoted to the study of self-similar solutions of the (2+1)- 
dimensional coupled nonlinear Schrijdinger equations 

$:I+ $\:+ $:.;I+ q[l$1')12+ (I + h)l$(2112]$'11= 0 

$:"+ $it'+ $~~'+q,[I$"'l'+(I + h)J$.'"(']$"'=O 

where *"'I *::I are complex iunctms, h is a non-vanishing real parameter, q = +1 
and E = +I. We give the point-symmetry properties of the model and calculate generic 
(2+ I)-dimensional symmetry reductions. Some exact and approximate solutions are 
obtained. In particular, we use a variational approach to determine and classify a Set of 
physically relerml localized non-singular self-similar solutions. 

i. iniroduciion 

This work is devoted to a group theoretical analysis of the (2+ 1)-dimensional coupled 
nonlinear Schrodinger equations 

fi $ ~ ) + $ ~ ~ + $ ~ > +  q[I$'"I'+( 1 + h)i$'z'~2]$'''=0 
E\, i-- - i  *;~, (21 + $, 121 + , *;; (21 + nl,llr~ r i  0112 . ,  + ( i  + ~)i$!lIiZj$pl = o  (1.1) 

where $")(x, y. t) are complex functions (throughout the text, i = 1,2) ,  h is a non- 
vanishing real parameter, q = + 1  and E = f l .  

This model is of particular interest in the field of transverse effects in nonlinear 
optics (a review and extensive bibliography can be found in [ I ]  as part of a special 
issue on the subject). I n  fact, it is the basic model describing the time-independent 
copropagation ( E  = 1) [2] and counterpropagation ( E  = -1) [3,41 of two waves in 
self-focusing (7 = 1) or self-defocusing (7 = -1) media. For the copropagating case, 
$(" and $") denote the amplitudes of two circularly polarized waves and h can be 
normalized to unity. For the counterpropagating case, $'" and $'" stand for the 
forward and backward field amplitudes respectively with 0 s  h C I describing the 
wavelength-scale index gratings in the medium that are due to the standing-wave 
interference pattern [43. 

Our aim is to apply the techniques of Lie group theory in order to obtain similarity 
transformations that reduce (1.1) to algebraic or coupled ordinary differential equations 
 ODE^) and to solve some of them exactly, whenever possible, or approximately by 
using a variational approach. 

U J U ) - ~ I U / Y ~ / U Y ~ ~ Y +  iyaue.)u IG IYYL iur ruoiianing LIU 2649 ^ ^ ^ _  .._. . ~ - ~ .  ." - .^" ~ .~ . . . ,~ .~~ . _ >  
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The so-called symmetry reduction method is a standard procedure [5-1 I ]  that has 
been applied to various partial differential equations. Let us mention, for instance, the 
cases of nonlinear relativistically invariant equations [ 121, the Kadomtsev-Petviashvili 
equation [13,14], the classical q56-field equation [15-171, Davey-Stewartson equations 
[IS], the 3~ real Landau-Ginzburg equation [19,20], nonlinear Schrodinger equations 
[21-27), the stimulated Raman scattering system [28] and the pumped Maxwell-Bloch 
system [291. Briefly, the procedure consists of the following five steps. 

(i) Find the Lie group G of point-symmetry transformations 

(1.2) 
where x = ( x , y , z ) ,  that leaves (1.1) invariant. In other words, if J1'll(x) and J1(21(x) 
are solutions of (1.1), so are $")(<) and $"'(x). 

(ii) Find subgroups of G for which their projected actions onto the space of 
independent variables ( x ,  y, z )  have orbits of codimension 0 and 1. 

(iii) Find the invariants of the above subgroups and express the dependent variables 
in terms of them. Here we will make the following restrictions. First, we will consider 
only subgroups for which their actions on (x, y, z, @', #( ' I*)  have orbits of codimension 
4 or 5 in order to avoid any kind of partial reductions [7]. Second, we will restrict 
ourselves to generic (2+ 1)-dimensional reductions for which J1'" are explicit functions 
of the three independent variables; this excludes, for instance, solutions that can be 
obtained by 'rotating' the soiutions of the (1 + 1)-dimensional version of (1.1). For the 
cases under consideration this provides expressions of the type 

p y x )  = L I ' ~ l ( x ) f ' y t ( x ) )  (1.3) 
where LI and 5 are known functions and the invariant 6 plays the role of the new 
independent variable. 

(iv) Substitute the transformations (1.3) into the original equation in order to obtain 
the wanted algebraic equations or ODES. 

(v) Solve these reduced equations forf'"(f) and substitute back into (1.3) to obtain 
solutions of (1.1) that are invariant under the considered subgroup of G. 

The task of solving the reduced coupled ODES is quite difficult in general. Usually, 
one restricts the analysis to the determination of conditions under which the reduced 
equations are of PainlevC type, that is, when none of their solutions have movable 
criticai points. The method is weii adapted for singie equations since a iarge 
classification of second- and third-order Painlevi-type equations exists [30,31]. This 
is not so easy for coupled systems. 

Here we will give only few exact solutions. Rather, we will concentrate on a 
particular reduction and use a variational method to obtain the approximate expressions 
of a large class of localized non-singular solutions that are relevant in nonlinear optics. 
These self-similar solutions describe the transverse modal properties of a nonlinear 
Fabry-Perot interferometer [32]. They are invariant under a particular point-symmetry 
subgroup of the models that involves the Schrodinger conformal point-symmetry (also 
known as the Talanov lens transformation in optics [331). 

The variational approach we will use is a useful tool to obtain explicit approximate 
analytical solutions of nonlinear evolution equations. Moreover, it has recently been 
qp!ied ifi -a&!y of pmb!ems ifi fion!inear optics [27,32,34-36!. Briefly, it consists 
of the following steps: 

& ( O ( i )  = a(')( i = Ag(x, J1('), J1'2') g x, $(I) ,  J1'2') 

(i) reformulate the original evolution equation as a variational problem; 
(ii) choose an appropriate trial function, with some free parameters in it, that 

describes the main characteristics of the solution; 
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(iii) solve the Euler-Lagrange equations for the chosen trial functions in order to 
determine the parameter values and to obtain the wanted approximate analytical 
solution. 

The paper is organized as follows. In section 2, we show that the point-symmetry 
group G of (1.1) is the symmetry group of the (2 + 1)-dimensional Schrodinger equation, 
that is Sch(2). with an additional phase symmetry (an even larger group exists for the 
case h = 0). The corresponding IOD symmetry algebra g is the direct sum between 
Sch(2) and a change of phase generator. The subalgebras of g are then quite easy to 
obtain from the known classification of non-conjugate subalgebras of Sch(2) [37]. In 
section 3, we give the list of the subalgebras we are interested in together with their 
corresponding invariants and the reduced equations they lead to. Some exact analytical 
solutions are given, whenever possible. Finally, in section 4, we use the variational 
approach to obtain the approximate solution behaviour of the physically relevant 
reduction for which exact analytical solution cannot be obtained. The calculations are 
supponed with graphs showing some typical relations between the parameters involved 
in the approximate solutions. 

2. Point-symmetry group 

The point-symmetry group of the model (1.1) can be traced back to the point-symmetry 
group of the uncoupled case which is the ZD Schrodinger group. By adding the 
continuous symmetry transformation between #”) and $‘2’, it is a straightforward 
calculation to show that (1.1) is invariant under the 10 following transformations: 

three translations 

:=x+x, j = y + y o  i = z + z o  (2.la, b, c )  

two Galilean boosts 

(2.26) 

one rotation 

~ = x c o s 8 + y s i n O  j = - x  sin 8 + y  cos 8 (2.3) 
one dilation 

one conformal transformation 

and two constant changes of phase 
$ I C  = *I;)  exp(-\/=i (2.6) 
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where xo, yo, z,, U;, 0, a, A and 4j are the real parameters of the transformations. Note 
that a more general gauge invariance 

where M E U(2), exists when h = 0 but we will not consider that limiting case here. 
When *I2'= 0, we recover the point-symmetry group of the scalar (2+ 1)-dimensional 
noniinear Schrodinger equation. Finally, let us point out that relation (2.5) is also 
known in optics as the Talanov lens transformation [33]. It describes the image of a 
field produced by a thin spherical lens with focal length l / A .  

The corresponding generators of the above symmetry group G are respectively 

P,=a, pY = ay P, =a,  (2.8) 

K,=zP,-x~(M"~+M'~' )  (2.9a) 

K ,  = ZP, - yf(M'l'+ M'2') (2.96) 

J = yPx - XP, 

D = ~ ~ P , + X P , + ~ P , - ( * ' " ~ , I ~ ~ + * ' ~ ' ~ , I . ~ + C C )  (2.11) 

(2.10) 

(2.12) c = 2 2 ~ ,  + z ~ ~ x  + z y ~ v  -;(x2 +y2)( M("+ M ' ~ ) )  - z($( ' 'a, , ,~ + @ 2 ) a p  +cc) 

M " )  = - ~ ' ~ ' ~ ( * ' ~ ) a * ~ , , - ~ c ) ,  (2.13) 

They form a Lie algebra g with the commutation relations given in table 1. After 
the basis change { M " ) ,  M ' 2 ' } + { M ( ' ) + M ' 2 ) ,  M'"-M(*)} ,  this algebra i s  identified as 
the direct sum of the Schrodinger algebra sch(2) and the generator M'"- M'2) ,  that is 

(2.14) 

Since {M'')-M(2'} commutes with generators of sch(2), it is easy to determine the 
non-conjugate subalgebras of g by making use of the above direct sum decomposition 
as well as the known classification of non-conjugate subalgebras of sch(2) [37]. All 
splitting (with respect to the direct sum above) subalgebras of g are obtained by the 
union of subalgebras of sch(2) with { M " ) -  M'"}. All non-splitting ones are obtained 

subalgebras of sch(2) with the closure condition respected under mutual commutations. 
As stated in the introduction, the subalgebras of g we are interested in are those that 

g = sch(2) 0 { M " )  - M'" j. 

I.., "J '"U"'~ nrlrli-n Y," - I  Lf(l)-),f(2)), where ~ +, re-! p-r-~ete., to ea& ge-e:a:=r /Yi =f :he 

Table 1. Commutation relations for the generators of the algebra g. 

M'" C D J K ,  K, P: P, P, 

c 0 - 2 c  0 0 0 -D  - K ,  - K ,  0 0  
D 0 0 K. K .  -2P. -P. - P. 0 0  
J 
K. 
K, 
P; 

. "  
0 K ,  - K ,  0 p ,  -PA 

0 0 -P .  (M'"+ M"') /2  0 
0 0  
0 0  

0 -P, 0 
0 0  

(M"'+M'' ' ) /2  0 0 
0 0 0  

0 0 
0 

0 0  
0 0  
0 0  

0 
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have corresponding group orbits of codimension 4 or 5 in (x. y, z, +('I, (I("*) and that 
provide generic (2+ 1)-dimensional reductions. Under these restrictions, only eight 
non-conjugate subalgebras are left, that is 

(1) J+a,M"'+a,M'2',D+b,M"'+b2M'2',Pz 

(2) 

(3) 

(4) 

( 5 )  J+a,M"'+a2M"',Pz+b,M"'+b2M'Z' 

( 6 )  D + c J +  b,M"'+ b,MC2', P, 

K ,  7 P,, C + P, * J +  b,M"'+ b,M"' 

.I+ a ,  MI"+ a2M'2', D+ b,M"'+ b2M'2' 

J +  a ,  M"'+a,M'2', C +  P,+ b,M"'+ b,Mf2' 

(7) K,, K y  + cp, 

(8) D+b,M'"+b2M'2' ,  K ,  

where a,,  b, and c are real parameters. Only the first subalgebra generates a subgroup 
with orbit of codimension 0 in (x, y, 2). All other reduce (1.1) to coupled  ODE^ as we 
will see in the next section. Even though subalgebras (7) and (8) do not appear explicitly 
in the classification given in [37], we have included them here. They do appear in the 
classification of subalgebras of the extended Galilei-similitude algebras, which is the 
Schrodinger algebra without the conformal symmetry [21]. 

3. Symmetry reductions 

The determination of transformations that reduce the order of (1.1) proceeds through 
the calculation of the invariants of the subgroup Go of G [lo]. We recall that if 
{ X j ,  j =  1,2, .  , . , D }  is a basis for the D-dimensional Lie algebra of Go, then these 
invariants are obtained by solving the equations 

(3.1) 

where Q is an auxiliary function. For instance, subgroups with generic orbits of 
codimension 1 in (x. y, z )  and 5 in (x, y, z, (I(", 3"*) lead to five invariants. For the 
case considered here, they can always be written in the form 

1, = 5(x, Y, 2) I, = f ' i ' ( 5 ) =  ( Iyx ,y ,  z)[di ' (x,y,  z)]-' IT (3.2) 

where 5 and a are known functions and 5 plays the role of the new independent 
variable called the symmetry variable. 

Substituting (3.2) into (1.1) reduces (1.1) to nonlinear coupled ODES forf'". Since 
f ") are complex, one can make the substitution 

XjQ(X, y, 2, p, (I""*) = 0 

f " ' ( 5 )  = A"'(5) exp[&i E ' - ' ~ ' ' I ( ~ ) I  (3.3) 

in  the reduced equations. It appears that one can always decouple the two real equations 
for the amplitude and phase of each wave and obtain q"' as a function of A'". Let 
us run through the individual subgroups, identifying them by their Lie algebras, and 
give their corresponding reductions. Throughout this part, we have r = ( ~ ~ + y ' ) ' ' ~  and 
B = tan-'y/x. 
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( 1 )  .I+ a ,  M"' +a,M"', D + b, M (I' + b,M"', P, 

This subalgebra provides a reduced algebraic equation that has the solutions, for bj = 0, 

+'"= Cjr-' exp[J=i ~ ' - ' a : e ]  (3.4) 

where 

1 (1 - a i )  - ( I  + h) (  1 - a : - j )  c;=- f o r h # O , - 2  9h 2 + h  (3.5) 

( 2 )  K,FP,, C+Pz*J+b,M'1'+b2M(Z)  

The symmetry variable for this subalgebra is 

y r * x  e=- 
1+z2  

and the reduction is 

(3.8) 

where 

fFi)+(bi-&2)f'i'+ ~ [ ~ f ( i ' ~ z + ( l +  b)lf"-"12]f"'=0. (3.10) 

Equation (3.10) has the form of two coupled nonlinear quantum harmonic oscillators. 
Forf"' real, an approximate solution for the nonlinear modes can be obtained using 
the variational approach with the Hermite-Gauss polynomials as trial functions [27] .  
We will not go further into this analysis here. 

13) j+a ,M-<:;+a2M-m,  D+b,M-!!!+b,M-:'! 

This subalgebra leads to the symmetry variable 

rz-112 

and to the reduction 

+"'" ' ' ' (~)z~'/2exp 

where 

( 3 . 1 1 )  

(3.12) 

+ 9[lf'i)12+(l+ h)lf'"-"12]f"'=0. (3.13) 

As for the uncoupled case, this is relevant in the description of the field envelopes in 
the early-stage evolution of a self-focusing collapse [38-401. 
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(4) .I+ a,M (I' + a2M '*!, C +  P, + b,  M"' + b,M f2! 

The invariants of this subalgebra yield 

5 = r( 1 + z2)-'" (3.14) 

and the reduction 

+'"=f'"(~)(1+z2)-"' e x p [ a  ~ ~ - ' ( $ z < ~ + a ~ B -  bj tan-lz)] (3.15) 

where 

Equation (3.16) describes a nonlinear coupling between the 'radial' parts of isotropic 
ZD quantum harmonic oscillators. On the other hand, this reduction is also of particular 
interest in nonlinear optics where it describes the transverse modal field in a nonlinear 
Fabry-Perot interferometer with spherical mirrors. Some particular solutions of (3.16) 
have already been pointed out in the literature [32]. We will extend these results in 
the next section. 

( 5 ,  j + , , M .  :!I  pz + b,M. !!! +b*M-"' 

The reduction associated with the above subalgebra is 

+''I =f'"( r )  exp[- E ' - ' (  a,B - b,~)] 
where 

(3.17) 

Forf'" real, this leads to the stationary self-trapping solutions of (1.1). Some particular 
solutions for the uncoupled case have been extensively analysed in the literature 
[41-431. These solutions are known to be unstable and eventually to collapse in the 
medium [38-401. In analogy with the uncoupled case, the localized solutions of (3.18) 
can be obtained from the particular case where b f +  -CO in (3.16) [27]. 

(6) D+d+b,M"'+b,Mi2' ,  P, 
This subalgebra leads to a logarithmic spiral-like symmetry variable 

<= B + c  In r 

with the reduction 

where 

(3.19) 

(3.20) 

(3.21) 
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Solutions of (3.21) are r-independent and singular at r = O .  As such, they could be 
relevant in the filamentation theory [44]. However, one has to check for 0-periodicity 
[17,24,45]. 

Substituting (3.3) in (3.21), one obtains 

1 cbj [A'"I2 exp [-] -2c5 
1+c2 

+bi I [A"'l2 exp [ "3 1+c2 d5] 
(1 + c2)2 

(3.22) 

where S, are integration constants. The quantities Y"'= [A'"l2 d5  satisfy two coupled 
third-order ODES that reduce to second order when b, = 0, that is 

(1  + c2)A:;'-(1+ c2) S2 -exp[1+e2] 4c5 -2cA:"+A"' 
[A 1 

+q[(A'i')2+(1+h)(A0-i')2]A'i'=0. (3.23) 

For Si = 0, (3.23) describes two nonlinear coupled oscillators with damping for 
c<O. However, no single-valued solution in the x-y  plane exists for that case 
[17,24,45]. 

For c = bi = 0 and f'" real, exact analytical solutions of (3.21) that are periodic in 
the x - y  plane can be found for identical fields $"'. These are 

where O < k 2 < f  is the squared-modulus of the cosine elliptic function cn( ,k) and 
h > -2(h < -2) for q = 1 ( ~  = -1). Periodic solutions correspond to values of k that 
satisfy 

Tr 
K ( k ) =  n = 2 , 3 , 4 . .  . (3.25) 

2 n ( l -  2k2)'I2 

where K is the complete elliptic integral of the first kind. For instance, the first three 
setsoivaiuesare (k=U.635;n=i),  ( k = U . b / l ; n = j ) a n d  ( k = 0 . 6 9 i ; n = 4 ) .  lnecase 
n = 1 gives k = 0 and corresponds to the linear limit. 

Figure 1 shows the field intensity contours for the first value of k. The fact that 
these solutions exist only for specific values of the modulus could make them relevant 
for the process of spatial pattern formation in nonlinear optics (see, for instance, [ l ]  
and references therein). 

- _ _ _  - _ _ _  ._ - 

(7) K,, Ky+cPv 

This subalgebra reduces (1.1) to coupled first-order ODES for which the solution is 

where Ci are constants and 

Ijc  In(z + c ) / r  CZO 
(3.27) ' p ( i )  = 77[c:+ ( 1  + h)C:-,l{ c = o .  
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- 4  - 2  0 2 4 

Figure 1. Contour plot of (3.24) for k=0.635 ( n  = 2) 

x 

This solution physically describes an elliptical catastrophic self-focusing process 
because of its singularity behaviour at z = O  and z = - c  138,391. A symmetric solution 
is obtained under the symmetry transformation z + z - c/2. 

(8) D+b,M"'+b2Mf2', Ky 

This subalgebra provides the symmetry variable 
6 = xz"i2 

and the reduction 

(3.28) 

(3.29) 

where 

Substituting (3.3) in (3.30) gives third-order coupled ODES for Y"'=j [A"']'d& the 
soiuiion of which can be giveii in teiiiis of :he Pain!cvt transcenden: Fcncdon f ~ :  the 
uncoupled case [21]. We will not go further into the analysis of the generic coupled case, 

4. Physical application of reduction (3.16) 

The coefficients in 
(3.15) remind us of the diffraction law of Gaussian optical beams. In fact, in the linear 
limit q = O  the modal solutions of (3.16) are the Laguerre-Gauss functions. These 
solutions also describe the modes of a linear cavity with spherical resonators, that is 
a Fabry-Perot interferometer with spherical mirrors [461. 

a"'(x,  jj, L )  = ( 1  + z')-"' exp[- E ' - ' ( z . $ ~ / ~ +  a,B - b,  tan-'^)] 
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The aim of this section is to solve approximately the full nonlinear equation (3.16) 
in order to obtain the nonlinear generalization of these self-similar linear modes. The 
case of a cavity with plane mirrors, described by reduction (3.17), corresponds to the 
limiting case where b, + -m in (3.16). These results generalize the analysis done in 
[32] for the fundamental mode of the cavity. 

First, let us note that the reduction (3.15) can be embedded in the more general 
transformation [27] 

JI" '=(~+Z~)"U' '~(Z, 5) exp[J=i&'-'(+zl2+a,e)] (4.1) 

(IJ -u(ll-i 1 2 ( 1 1  a: -7 U")+ q[1 u("/2+ (1 + h)l U'2'12]""= 0 

where Z = tan-'(z) and U"'(Z, 5) are complex functions satisfying 

U 

(4.2) 
d=Tu':'+u,+5 5 

1 ai 
5 5 

Ug'+ U::,+- Ur'-a<2U(2J-G U(2J+~[1  Uc"12+(l + h)l U'1J12]U'2' =O. 

Equations (4.2) describe the nonlinear propagation of two cylindrical waves in a 
nonlinear Kerr medium with parabolic refractive index profile. This system has 
stationary solutions of the form 

U"'=f"'([) exp[-JT &'-'b,Z] (4.3) 

with f ' " ( 5 )  satisfying equation (3.16). Thus, transformation (4.1) establishes a link 
between radiative-like solution (3.15) and stationary solution (4.3). Since the variational 
analysis is more easily tractable on the basis of stationary solutions, we will retain 
(4.2) as our basic evolution equation. As an additional result, we will obtain an 
approximate analytical description of the quasistationary propagation of (4.11, which 
is not without value. 

Equation (4.2) can be reformulated as a variational problem with the Lagrangian 

A = A O ) + A ( ~ J + A ( I ~ J  (4.4) 

where 

Equation (4.2) is then derived from the cylindrical Euler-Lagrange equations 

(4.7) 

The essence of the variational approach lies in the choice of the most appropriate 
trial functions that describe, as faithfully as possible, the exact self-similar solutions 
hehaviour. On the other hand. since we want to obtain analytical results, we have to 
restrict our choice to a generic one. We found that a good compromise between 
simplicity and accuracy is given by the trial functions 

U'"= A,L'"($) exp[- e'-'((p, +Et5')] (4.8) 
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where parameters Ai, W., 'pi and B; are all real functions of the variable Z. The choice 
of the quadratic phase variation Bit2 is a standard one in optical wave propagation 
and is necessary for those interested in a description of the quasistationary propagation 
[27,32,34-361. Finally, we are reminded that the choice of real functions L("(cj), & = 
e/ W;, is based on the form of the exact localized solutions of (3.16) in the linear limit 
7 = 0, which are the Laguerre-Gauss polynomials. In the following, we will restrict 
ourselves to the first four polynomials, that is 

ai = O  L'" - -exp[-~fl  

(4.9) 

Substituting the ansatz (4.8)-(4.9) in the Lagrangian (4.4) and integrating the 

(A) = (A'0)+(AiZz2)+(A('12') (4.10) 

&variable from 0 to infinity yield the reduced (or averaged) Lagrangian 

(4.11) 

and 

( A ( ' 2 2 ) = - 7 ( l + h ) A ~ A ~ ~ 6 .  (4.12) 

Throughout the text, the dot means derivative with respect to Z. The coefficients alii 
(k  = 1,. . . , 5 )  and a6 are given by 

a,i  =jam [L'i']25; d t i  azi = ~om[L"']25: d[, 

and can be evaluated analytically. Their values are summarized in table 2. 
The reduced Euler-Lagrange equations 

- d [JW] - = _  J:: 

d Z  J Y z  

Table 2. Values of n,, (k = I ,  2.3.4.5) for the first four Laguerre polynomials. 

(4.14) 

L ,  L, L ,  L .  
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where y ,  stand for Ai, W;, 'pi and B, provide the eight following relations: 

-- "( " ' -0J  WfQju,j+B,Wfa, ,+a, ,+4Bf W?a,,+afa,, 
JA; 

8(A) 
S'pi 

-=OOjAfWi= E, =constants 

(4.15) 

(4.16) 

(4.17) 

0 3 2  Wj+,a,j+4BjW4a2i+16BfWqa2j+ W?a,,  8(A) 
SW, 
-= 

(4.18) dol6 
d W, 

- qAj W?aSi - q ( 1 +  h)A:_,W,--=O 

where the constants E; are proportional to the energy Xi in each wave through 

Note that there is no energy exchange between the waves during the propagation. 
Relations (4.15)-(4.18) give an approximate description of the evolution of the fields 
U"' around the stationary solution (4.3) of (4.2). We will not attempt to solve them 
explicitly but rather restrict our analysis to the stationary case. 

The determination and classification of localized non-singular solutions of (3.16) 
are then reduced to the determination of the relations between the amplitudes Ai (or 
E j )  and widths W; in (4.8) when Ai and W, are assumed constants, 'pi = -bjZ and 
Bi=O. Substituting these values in (4.15), (4.16) and (4.18), one obtains 

and 

(4.20) 

(4.21) 

Relations (4.20) and (4.21) are parametric equations that give E; and bj as a function 
of the widths W, and W, of the approximate localized solutions of (3.16). We solved 
them for various values of W, and W,. 

Figure 2 shows the normalized energy S = (2+ h ) &  in each wave as a function of 
b for two identical beams, i.e. A ,  = A , ,  W, = W, and b, = b, = b. The curve numbers 
refer to the mode number in (4.9). The signs + and - refer to a self-focusing medium 
(7 = 1 )  and a self-defocusing medium (q = - 1 )  respectively. The points b = 1 , 2 , 3  . . . 
and S = O  correspond to the linear limit 9+0.  The case described by curve I t  was 
studied in [32]. The energy values at b + --OO are 4 r ,  16r, 24r, 32n and correspond 
approximately to the energy of the first self-trapping solutions of ( 1 . 1 )  (no z-dependence 
in the amplitudes) [41-431. The fundamental self-trapping solution is known to be 
unstable and eventually to collapse in a self-focusing process [38-401. We suspect a 
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b 

Figure 2. Normalized energy S=(2+ h )  X, in each wave for two identical beams. Cune 
numbers refer to L , ,  . . . , L4 respectively while signs + and - stand for 7 = 1 and 7 = -1. 

---y;n,t; 
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\ I  
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Figure 3. Energies X, and X2 as a function of b, ( 0 )  and b, ( b )  for two beams in the 
fundamental mode with = 1, h = I ,  W, =0.928 and 0 . 6 9 5 s  W 2 S  1.209. intensity profile 
of the first (c )  and second ( d )  beam for the parameter width W,=O.85. 
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Figure 4. Energies Z, and Z2 a8 a function of b, ( a )  and b, ( b )  for two beams in the 
fundamental mode with R = -I, h = 1 ,  W, = 2.489 and 2 .240s  W, s 2.970. 
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Figure 5. Energies X, and X2 as a function of  b, ( a )  and b, ( b )  for the first beam in the 
fundamental mode and the second beam in the second mode with = 1, h = 1, W, = 1.520 
and 1 .3875 W 2 s  1.520. Intensity profiles of the first (c )  and second ( d )  beam for the 
parameter width w2= 1.45. 
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similar behaviour for the higher-order self-trapping solutions [47]. But here, we are 
more interested in the self-similar solutions which exist for energies below the critical 
self-trapping energies. 

In addition to the above identical localized self-similar solutions, there is a relatively 
large set of solutions where W, # W,. This physically corresponds to the case where 
the net flux within the cavity does not vanish [32]. For example, full curves on figures 
3 and 4 show the energies Z, and X2 as a function of b, and b, for two beams in the 
fundamental mode with h = 1. For comparison, the long broken curve give the energy 
for the case W, = W, while the short broken curve gives the energy for h = -1 (no 
nonlinear coupling). In figure 3 (7  = l), we have chosen W, =0.928 which leads to 
0.695s W2S 1.209 and provides the possible self-similar solutions centred around 
b, = b, = -2. The points on the full curves correspond to W,= 1.209. As a typical 
example, we give the intensity profiles of the beams for W, = 0.85 on figures 3(c) and 
( d ) .  Infigure4(7 =-l) ,wehaveset W, =2.489and2.2406 W2S2.970thatcorrespond 
to a set of values centred around b, = b, = 2. Here, the points on the full curves are 
for W, = 2.240. An interesting point that comes out from figures 3 and 4 is that two 
different solutions exist for given parameters b, which could provides the onset for 
bistability. 

The-most significant result of our analysis is the possible coexistence of self-similar 

energy values of the beams when the first is in the fundamental mode and the second 
in the second mode with q = 1, W, = 1.520 and 1.387s W2S 1.520. The broken curves 
correspond to the energy in each beam without nonlinear coupling (h = -1). The points 
on the full curve are the limiting case W, = 1.387. A typical intensity profile is also 
shown on figures 5(c) and ( d )  for parameter width W,= 1.45. 

The above results are only few examples from the possible self-similar nonlinear 
structures predicted by (1.1). It seems that the 'nonlinear superposition' of two beams 
having different modal profiles is always possible within a certain parameter range. 

beaz-s havi-g differep"! moda! profi!es. Fe: exazp!e, fc!! CcNeS c?n f i g r e  5 shew the 

5. Discussion of the (1 + 1)-dimensional case 

- 
I he (1 + 1 j-dimensionai version of ( i . i  j (no y-dependence for exampiej has the famous 
property of being completely integrable for h = 0. It is identified as the Manakov 
equation and can be solved by the inverse scattering transform [48,49]. This model is 
of particular interest in wave propagation in optical fibres (with x being a time-like 
variable). A general analysis of the travelling wave solutions for that case has been 
carried out in [SO]. Unfortunately, this reduction of dimension breaks the conformal 
symmetry property present in the (2+ 1)-dimensional case. A consequence is the loss 
of the self-similar solutions (3.16). However, if the 1 + ( ' ) 1 2  terms are replaced by (i) 
(1  + or by (ii) l+( 'J14 in (1.1) then a point-symmetry generated by the vector 
field 

v =  ( I + ~ ~ ) P , + z x P , + z ~ P ,  - ; x ~ ( M ( ' ~ + M [ ~ ~ )  
- $ z ( + ( ~ ) J ~ u J +  +'2'~,oi+c~) + b ,  M ( " +  b,M(,' 

does lead to an equivalent reduction 

+" '=f ' ' ' (S)( l+rZ)- ' /~  exp[&i e ' -I ($zf2-b ,   tan-'^)] 
6 = x2( 1 + 2 - 1  
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where f"'(5) satisfy 

f i ; '+ (b j  -ac2)f"'+ v[lf'i'12+ (1 + h)[f'3-''12]fii)= 0. (5.3) 
The first case is still physically interesting from a phenomenological point of view as 
it simply redistributes the nonlinearity along the z-coordinate. Nonlinear modal proper. 
ties that are equivalent to those described in section 4 do exist for the first case and 
are qualitatively the same as for the (2+ 1)-dimensional case except that the modal 
structure of the self-similar solutions are approximately given by the Hermite-Gauss 
polynomials [27]. In fact, the self-similar solutions (5.2) can he embedded into 

+ i i ' = ( l + z  2 ) -114 u'"(z, 6) exp[+&i~'-'z6'] 
(5.4) 5' = x'( 1 + 2 - I  

where U''' are the stationary solutions of 

U2'+ U~~'-~~2U'''+~[~U'''~2+(1+h)~U'2'~2]Ui''=0 
e a  Uy'+ U$'-a52U'2'+ ?[I U'2'12+ (1 + h)l U'l'I'] Ui2'= 0. (5.5) 

Equation (5.5) derives from the same Lagrangian (4.4)-(4.6) with ai = O  and under the 
Euler-Lagrange equations 

-- a [ a* ]+'[""]-&=o. 
az au':'* a t  au;'* 

We can choose the same form as  in (4.8) for the trial functions except that the 
Laguerre-Gauss polynomials L are replaced by the Hermite-Gauss polynomial H. The 
reduced Lagrangian and its corresponding Euler-Lagrange equations then lead to 
relations similar to (4.14)-(4.18), that is 

Wi~iCij+BjW:~, ,+~, j+48:  W:C~~+: W:C~~-  7Af W;cdj 

- ~ ( 1 +  h)A:-,N$c,=O (5.7) 

A; W, = E; =constants (5 .8)  

w, = 413, N$. (5 .9 )  
W, 2 .  P ; c , ; + ~ B ; W ? C ~ ~  - c3i + 12Bf Wfc2, +;W:C~; -$?A? W?cd, 

-0  (5.10) - ~ ( 1  + h)A:-, -- d cs 
d W, 

where the constants E, are related to 1, through 
m m 

X c = / ~ m ~ $ " ' ~ 2 d x = ~  -m IU"'12d[=c,,E,. 

The coefficients ckE ( k  = 1,. . . ,4 )  and cs are given by 
m m 

cII  = [H"'12 d5, c2, = j-m [H"'121? d l ,  

(5.11) 

(5.12) 
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and evaluated analytically for the first two polynomials in table 3 (H, and H2 are 
identical in form to L,  and L2).  

Finally, the relations that determine the approximate parameter range of the 
localized self-similar solutions are 

(5.13) 

and 

As (4.20) and (4.21) relations (5.13) and (5.14) are parametric equations that give 
E, and b, as a function of the parameters widths W, and W,.  For instance, figure 6 
shows the normalized energy S = (2+ h )  X3 in each wave as a function of b for two 
identical beams. The notation is the same as in figure 2. The only major difference 
from figure 1 lies in the unsaturating behaviour of S at b+ -W. All other predictions 
and behaviours discussed for the (2+ 1)-dimensional case are also applicable here. 
Furthermore, because it is less demanding in computer time, this (1  + 1)-dimensional 
model can be useful to those interested in a numerical study of the self-similar solutions 
behaviour. 

When the coupling terms in the (1 + 1)-dimensional model are a quartic nonlinearity 
as in the second example, the field equations do not derive from a Lagrangian; thus, 
the approximate variational method above cannot be applied. 

Table 3. Values of e, (k = 1,2,3,4) for the first two Hermite polynomials 

b 

Figure 6. Normalized energy S= (2+ h )  1. in each wave for two identical beams. Curve 
numbers refer to H, and H2 respectively while signs + and - refer to 7 = 1 and = - I .  
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6. Conclusions 

We have given the point-symmetry properties of the set of coupled nonlinear 
Schrodinger equations (1.1). The symmetry algebra g was shown to be a direct sum 
between the 2~ Schrodinger algebra sch(2) and a constant change of phase generator. 
We have used a previous classification in conjugacy classes of the subalgebras of sch(2) 
to help in the determination of subalgebras of g. We have applied the symmetry 
reduction method for some of these subalgebras that lead to generic (2 + I)-dimensional 
reductions. These solutions are of particular interest in the field of transverse effects 
in nonlinear optics. 

As a physical application, we have obtained approximate analytical expressions 
for the localized self-similar solutions of the equation describing the modal properties 
of a nonlinear Fabry-Perot interferometer with spherical mirrors. Our analysis was 
based on a variational method that has been applied in various recent studies in optics. 
This permitted us to classify all localized solutions of the reduced equations in terms 
of their energies and widths. These solutions appear to have a well defined nonlinear 
modal structure given approximately by the Laguerre-Gauss polynomials. They exist 
for self-focusing as well as self-defocusing media. 

The results of this study are indicative of a large set of self-similar nonlinear 
coherent structures predicted by the models (1.1). The coexistence of these self-similar 
coupled waves can be of interest in the study of various nonlinear systems and in 
particular for the transverse instability of counterpropagating optical beams due to 
transverse effects [4]. Many important questions remain to be addressed. For instance, 
the stability and bistability properties of the nonlinear modal structures described in 
section 4 have to be analysed (see, for instance, the recent results in [SI]). This of 
course necessitates more exact results about the reduced ODES. We plan to go back to 
that issue in the near future. 
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