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Abstract. This work is devoted to the study of self-similar solutions of the (2+1)-
dimensional coupled nonlinear Schriédinger equations

V=Tg+ g0+ i)+l + (1 + R PP R = 0
V=T P+ g+ P+ a1+ + g VPP =0

where q';‘” and ¢f“’ are complex functions, # 15 a non-vanishing real parameter, 1 = =}
and ¢==x1. We give the point-symmetry properties of the model and calculate generic
(2+1)-dimensional symmetry reductions. Some exact and approximate solutions are
obtained. In particular, we use a variational approach to determine and classify a set of
physically relevant localized non-singular self-similar solutions.

1. introduction

This woark is devoted to a group theoretical analysis of the (2+1)-dimensional coupled
nonlinear Schrédinger equations
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where ‘,{;“}(x, y, z) are complex functions (throughout the text, i=1,2}, h is a non-
vanishing real parameter, n = £1 and ¢ = =%1.

This model is of particular interest in the field of transverse effects in nonlinear
optics (a review and extensive bibliography can be found in [1] as part of a special
issue on the subject). In fact, it is the basic model describing the time-independent
copropagation (£=1) [2] and counterpropagation (£=—1) [3,4] of two waves in
self-focusing (n = 1) or self-defocusing (n = —1) media. For the copropagating case,
" and ¥ denote the amplitudes of two circularly polarized waves and / can be
normalized to unity. For the counterpropagating case, ¢ and ¢'* stand for the
forward and backward field amplitudes respectively with 0= hA=<1 describing the
wavelength-scale index gratings in the medium that are due to the standing-wave
interference pattern [4].

Our aim is to apply the techniques of Lie group theory in order to obtain similarity
transformations that reduce {(1.1) to algebraic or coupled ordinary differential equations
(opEs} and to solve some of them exactly, whenever possible, or approximately by
using a variational approach.
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The so-called symmetry reduction method is a standard procedure [5-11] that has
been applied to various partial differential equations. Let us mention, for instance, the
cases of nonlinear relativistically invariant equations [12], the Kadomtsev-Petviashvili
equation [13, 14], the classical ¢°-field equation [15-17], Davey-Stewartson equations
[18], the 3D real Landau-Ginzburg equation [19, 20], nonlinear Schrédinger equations
[21-27}, the stimulated Raman scattering system [28] and the pumped Maxwell-Bloch
system [29]. Briefly, the procedure consists of the following five steps.

{i} Find the Lie group G of point-symmetry transformations

£=Ag(x, 00, ) FOE =P (x, g, p?) (1.2)
where x = (x, y, z), that leaves (1.1) invariant. In other words, if ¢'"(x) and ¢ (x)
are solutions of (1.1), so are " (£) and §?(x).

(ii) Find subgroups of G for which their projected actions onto the space of
independent variables (x, y, z)} have orbits of codimension ¢ and 1.

{iii) Find the invariants of the above subgroups and express the dependent variables
in terms of them. Here we will make the following restrictions. First, we will consider
only subgroups for which their actions on (x, y, z, ', '*} have orbits of codimension
4 or 3 in order to avoid any kind of partial reductions [7]. Second, we will restrict
ourselves to generic {2+ 1)-dimensional reductions for which " are explicit functions
of the three independent variables; this excludes, for instance, solutions that can be
obtained by ‘rotating’ the solutions of the {1+ 1)-dimensional version of (1.1). For the
cases under consideration this provides expressions of the type

$(x) = aPx) fOE(x) (1.3)
where o and £ are known functions and the invariant £ plays the role of the new
independent variable.

{iv) Substitute the transformations (1.3} into the original equation in order to obtain
the wanted algebraic equations or ODEs.

{v) Solve these reduced equations for f'”(¢) and substitute back into (1.3} to obtain
solutions of (1.1) that are invariant under the considered subgroup of G.

The task of solving the reduced coupled oDEs is quite difficult in general. Usually,
one restricts the analysis to the determination of conditions under which the reduced
equations are of Painlevé type, that is, when none of their solutions have movable
critical points. The method is well adapted for single equations since a large
classification of second- and third-order Painlevé-type equations exists [30,31]. This
is not so easy for coupled systems.

Here we will give only few exact solutions. Rather, we will concentrate on a
particular reduction and use a variational method to obtain the approximate expressions
of alarge class of localized non-singular solutions that are relevant in nonlinear optics.
These self-similar solutions describe the transverse modal properties of a nonlinear
Fabry-Perot interferometer [32], They are invariant under a particular point-symmetry
subgroup of the models that involves the Schrédinger conformal point-symmetry {also
known as the Talanov lens transformation in optics [33]).

The variational approach we will use is a useful tool to obtain explicit approximate
analytical solutions of nonlinear evolution equations. Moreover, it has recently been
applied in a variety of problems in nonlinear optics [27, 32, 34-36]. Briefly, it consists
of the following steps:

(i) reformulate the original evolution equation as a variational problem;

(ii) choose an appropriate trial function, with some free parameters in it, that
describes the main characteristics of the solution;
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(iii) solve the Euler-Lagrange equations for the chosen trial functions in order to
determine the parameter values and to obtain the wanted approximate analytical
solution.

The paper is organized as follows. In section 2, we show that the point-symmetry
group G of (1.1) is the symmetry group of the (2 + 1)-dimensional Schrodinger equation,
that is Sch(2), with an additional phase symmetry (an even larger group exists for the
case h=0}). The corresponding 100 symmetry algebra g is the direct sum between
Sch(2) and a change of phase generator. The subalgebras of g are then quite easy to
obtain from the known classification of non-conjugate subalgebras of Sch{2) [37]. In
section 3, we give the list of the subalgebras we are interested in together with their
corresponding invariants and the reduced equations they lead to. Some exact analytical
solutions are given, whenever possible. Finally, in section 4, we use the variational
approach to obtain the approximate solution behaviour of the physically relevant
reduction for which exact analytical solution cannot be obtained, The calculations are
supported with graphs showing some typical relations between the parameters involved
in the approximate solutions.

2. Point-symmetry group

The point-symmetry group of the model (1.1) can be traced back to the point-symmetry

group of the uncoupled case which is the 2p Schrodinger group. By adding the

continuous symmetry transformation between ' and ¢'%, it is a straightforward

calculation to show that (1.1} is invariant under the 10 following transformations:
three translations

f=x+x0 §=y+y0 '2=Z+ZO (2.1a,b,C)
two Galilean boosts
et (3] i1 U:;'J -
b= exp| v—~1le 3 -2—z+v,-x X=x+uvz (2.2a)
0y _ (i) i 1 v} .
Plr=yVexp|v-1¢ 5 ?z-i-v,-y FEytuz (2.2b)
one rotation
X=xcosB+ysing y=—xsin0+ycos 9 (2.3)
one dilation
= 1 .1 .1 i) )
=—z X=—x == = ]
i=— - F=2y  V=ap 2.4)
one conformal transformation
- z - X . b4
Z= X = y=
1—A:z 1—Az 1—Az
(2.5}
. . A xT2yR
M = g1 = A [\/‘_"1‘ i AX Ty
W= g (1-A7) exp 4 1-az

and two constant changes of phase

=y exp(—/—Te' ') (2.6)
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where X,, ¥, 2o, U;, 0, @, A and ¢, are the real parameters of the transformations. Note
that a more general gauge invariance

[’;(1) B w(l) d’(l)
(E)- AE-w(2)

where M € U(2), exists when s =0 but we will not consider that limiting case here.
When ¢® =0, we recover the point-symmetry group of the scalar (2+ 1)-dimensional
nonfinear Schrédinger equation. Finally, let us point out that relation (2.5) is also
known in optics as the Talanov lens transformation [33]. It describes the image of a
field produced by a thin spherical lens with focal length 1/A.

The corresponding generators of the above symmetry group G are respectively

P.=9, P, =3, P,=3, (2.8)
K, =zP,—x}{(M"+ M'?) (2.9a)
K,=zP, -y M+ M®) (2.9b)
J=yP, —xP, (2.10)
D =2zP,+xP,+yP, — (¢Vo 0+ 4 Pa 0+ cc) (2.11)
C=z"P,+zxP +zyP, — i (x> + yH (M + M) — z(¢' 3,0+ P53 0 +cC) (2.12)
MY =—¢"V=1(g' V8,0 —cc). (2.13)

They form a Lie algebra g with the commutation relations given in table 1. After
the basis change {M", M@} > (M + M MY — M@, this algebra is identified as
the direct sum of the Schrddinger algebra sch(2) and the generator M = M? | that is

g=sch(2)®{M"Y - M?}, (2.14)

Since {MV — M®} commutes with generators of sch(2), it is easy to determine the
non-conjugate subalgebras of g by making use of the above direct sum decomposition
as well as the known classification of non-conjugate subalgebras of sch(2} [37]. All
splitting (with respect to the direct sum above) subalgebras of g are obtained by the
union of subalgebras of sch(2) with {M“) M@}, All non-splitting ones are obtained

H (M} _ pg(2) tar Y. of th
by adding a(M M'), where a is a real parameter, to each generator X; of the

subalgebras of sch(2) with the closure condition respected under mutual commutations.
As stated in the introduction, the subalgebras of g we are interested in are those that

Table 1. Commutation relations for the generators of the algebra g.

8] D 7 K, K, P P, P, LY AL ¥
c 0 -2C 0 0 ¢ -D -K, -K, 0 0
D 0 0 K, K, -2P. -P, -P, 0 0
J 0 K. -K_ 0 P, -P, 0 0
K, 0 0 -P,  (MMNaMTy2 o o0 0 0
K, 0 -P. 0 (MM + M@)/2 0 0
P, 0 0 0 0 o
P, 0 0 0 0
P, 0 0 0
M(l) Q )
M@ 0
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have corresponding group orbits of codimension 4 or 5 in (x, y, z, ¢'”, ¢'"*) and that
provide generic (2+1)-dimensional reductions. Under these restrictions, only eight
non-conjugate subalgebras are left, that is

(1) J+a,MV+a,MP D+b MY+ b,MP P,
(2) K. P, C+P.xJ+bMV+b,M?

(3) J+a M+ a,M?, D+ b,MV+b,M?

(4) J+a,MP+a,MP C+ P +b MY+ b,MP
(3) J+a,M"+a,M? P.+b,M"+b,MP
(6) D+cJ+b MV +b,MP P,

(N K., K,+cP,

(8) D+bMV+b,MP K,

where a;, b; and ¢ are real parameters. Only the first subalgebra generates a subgroup
with orbit of codimension ¢ in (x, y, z}. All other reduce {1.1} to coupled onEs as we
will see in the next section. Even though subalgebras (7) and (8) do not appear explicitly
in the classification given in [37], we have included them here. They do appear in the
classification of subalgebras of the extended Galilei-similitude algebras, which is the
Schrodinger algebra without the conformal symmetry [21].

3. Symmetry reductions

The determination of transformations that reduce the order of (1.1) proceeds through
the calculation of the invariants of the subgroup G, of G [10]. We recall that if
{X;,j=1,2,..., D} is a basis for the D-dimensional Lie algebra of Gy, then these
invariants are obtained by solving the equations

XQ(x,y,z, ¢V, p"*) =0 (3.1)

where Q is an auxiliary function. For instance, subgroups with generic orbits of
codimension 1 in (x, 5, z) and 5 in (x, y, z, ¥'”, ¥**) lead to five invariants. For the
case considered here, they can always be written in the form

I =&x, y,2) L=f8) =y (xy 2)[a(x 5, 2)] I* (3.2)

where ¢ and « are known functions and ¢ plays the role of the new independent

variable called the symmetry variable. A
Substituting (3.2) into (1.1) reduces (1.1) to nonlinear coupled onEs for £, Since
' are complex, one can make the substitution

FPE =AY explvV=Te' "¢ (EN (3.3)

in the reduced equations. It appears that one can always decouple the two real equations
for the amplitude and phase of each wave and obtain ¢'” as a function of A”, Let
us run through the individual subgroups, identifying them by their Lie algebras, and
give their corresponding reductions. Throughout this part, we have r = (x*+y%)"? and
g=tan""y/x
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1) J+a,M” +a,M?, D+b,M " +b,MP P,

This subalgebra provides a reduced algebraic equation that has the solutions, for b; =90,

o' =Cr ' exp[vV=1e""a.0] (3.4)
where
1 (1-ad)~(1+h)(1-ai,)
Cil=— ' - :
oh 2T h for h#0,-2 {3.5)
ai=a3 7(Ci+C=a}-1 for h=0 (3.6)
al+ai=2 n(Ci—-CH=al-1 forh=-2. (3.7)
(2) K. FP,, C+P,£J+b,M"V +b,M?
The symmetry variable for this subalgebra is
_yzxx
(=117 (3.8)
and the reduction is
. . : 1
WP =FOE 1+ 22 exp I:\/-—_l gt {; [x?+(z22=-1)£] - b, tanlz}] (3.9)
where
&+ (b= )+l P+ Q+nI TP =0, (3.10)

Equation (3.10)} has the form of two coupled nonlinear quantum harmonic oscillators.
For £V real, an approximate solution for the nonlinear modes can be obtained using
the variational approach with the Hermite-Gauss polynomials as trial functions [27].
We will not go further into this analysis here.

=72 s 2}

(3) J+aM™ +a,M, D+b,M" +b,M

This subalgebra leads to the symmetry variable

g=rz7V? (3.11)
and to the reduction
v = £z exp [x/"-_l gt (a,-& —%ln z)] (3.12)
where
. 1 V-1 i 1 ; i
22’+(E—T f) et [z(b.-"\/—_l) —'gz]f( ’
+qll S P+ + ISP =0, (3.13)

As for the uncoupled case, this is relevant in the description of the field envelopes in
the early-stage evolution of a self-focusing collapse [38-40].
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4) J+aM +a,M? C+P,+0,M™V +b,M™?
The invariants of this subalgebra yield

E=r(1+z%)7"? (3.14)
and the reduction

D= f (1 +27) 7 exp[vV—1 7 '(32£ + af — b; tan"'2)] (3.15)

where

so+L f"’+(b 1 )f"’+n[|f‘”| (PP =0, (3.16)

Equation (3.16} describes a nonlinear coupling between the ‘radial’ parts of isotropic
2D quantum harmonic oscillators. On the other hand, this reduction is also of particular
interest in nonlinear optics where it describes the transverse modal field in a nonlinear
Fabry-Perot interferometer with spherical mirrors. Some particular solutions of (3.16)
have already been pointed out in the literature [32]. We will extend these results in
the next section.

21 --Il) = {2

(5) J+a,M +a,M@ P +b MY +b,M%
The reduction associated with the above subalgebra is
¢ =9 r) explv=1 e (a8~ bz)] (3.17)

where
i 1 a2 i i —i i
fﬁ:’+;f‘r"+(b.-—r—§)f‘ Yl P+ A+ R) TP =0 (3.18)

For f*“ real, this leads to the stationary self-trapping solutions of (1.1}. Some particular
solutions for the uncoupled case have been extensively analysed in the literature
[41-43]. These solutions are known to be unstable and eventually to collapse in the
medium [38-40]. In analogy with the uncoupled case, the localized solutions of (3.18)
can be obtained from the particular case where b, > —o0 in (3.16) [27].

(6) D+cJ+b,M™ +b,M?, P,

This subalgebra leads to a logarithmic spiral-like symmetry variable

F=0+clnr (3.19)
with the reduction
=08 exp[f—s/—_l e"'Eln r:l (3.20)

where

(+ch)f 2c(1+\/—" ) 4 (1+¢— )fm

F [P+ A+ RO =0 (3.21)
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Solutions of (3.21) are z-independent and singular at r =0. As such, they could be
relevant in the filamentation theory [44]. However, one has to check for 8-periodicity
[17, 24, 45].

Substituting (3.3) in (3.21), one obtains

; 1 2¢f cb, 2ct
‘PEEJ=[A(:)]2 exPI:l+c.2.}{Si+2(ll+ pes [APT exp[1+ :l

o A e | ] )
(1+ 2)2J‘[A ) exp T d¢ (3.22)

where S, are integration constants. The quantities Y = [ [ AV d# satisfy two coupled
third-order oDEes that reduce to second order when b; =0, that is

i
[A{l')]a cxXp
+9[(A"Y+ 1+ (AR 1AY =0. {(3.23)

4 . .
(1+e)AY - (1+c?) [I:iz] —2cAY+AY

For §;=0, (3.23) describes two nonlinear coupled oscillators with damping for
¢ <{. However, no single-valued solution in the x-y plane exists for that case
[17, 24, 45].

For ¢ = b, =0 and f*” real, exact analytical solutions of (3.21) that are periodic in
the x-y plane can be found for identical fields ¢'". These are

) (2)A_£‘|: 2 ]1/2 |:___‘i___. ]
vy oy 7(2+ h)(1 -2k cn (1_2k2)l/2’k (3.24)

where 0<k?<?! is the squared-modulus of the cosine elliptic function cn( k) and
h>—-2(h<-=2) for n=1(n=—1). Periodic solutions correspond to values of k that
satisfy

k3

K= =27

n=2134... (3.25)

where K is the complete elliptic integral of the first kind. For instance, the first three
sets of vaiues are (k=10.633; n=2), (k=0.677;, n=3) and (k =0.691; n =4). The case
n=1 gives k =0 and corresponds to the linear limit.

Figure 1 shows the field intensity contours for the first value of &k The fact that
these solutions exist only for specific values of the modulus could make them relevant
for the process of spatial pattern formation in nonlinear optics (see, for instance, [1]

and references therein).

(7) K., K, *cP,

This subalgebra reduces (1.1) to coupled first-order oDEs for which the soluticn is

2 2
W= \/_z((zj_+ ‘)eXP{‘/_E [?:(X?T}i”c)”L""M(Z)]} 229

where C; are constants and

1/cln{z+¢)/z c#0

1/z c=10. (3.27)

cp“’=n[C?+(l+h)C§_,—]{
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Figure 1. Contour plot of (3.24) for k=0.635 (n=2).

This solution physically describes an elliptical catastrophic self-focusing process
because of its singularity behaviour at z =0 and z = —¢ [38, 39]. A symmetric solution
is obtained under the symmetry transformation z—- z—¢/2.

(8) D+b,M™ +b,M7, K,

This subalgebra provides the symmetry variable

g=xz""? (3.28)
and the reduction

W=7 exp[J—_l g (i J—;f— b; In 2)] (3.29)
where

fé?+§ EFE+bS O+l fP+ A+ IO =0, (3.30)

Substituting (3.3) in (3.30) gives third-order coupled oDEs for YV =[[A"]* d¢ the
. PR a Dainlavd tranmcrandant functinn far tha

soluiion of which can be given in terms of the Painlevé transcendent function for the
uncoupled case [21]. We will not go further into the analysis of the generic coupled case.

4, Physical application of reduction (3.16)

The coefficients o'(x, y, z)=(1+2z") """ exp[v=1&'""(z£’/4+ a0 —b;tan™'z)] in
{3.15) remind us of the diffraction law of Gaussian optical beams. In fact, in the {inear
limit =0 the modal selutions of (3.16) are the Laguerre-Gauss functions. These
solutions also describe the modes of a linear cavity with spherical resonators, that is
a Fabry-Perot interferometer with spherical mirrors [46].
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The aim of this section is to solve approximately the full nenlinear equation (3.16)
in order to obtain the nonlinear generalization of these self-similar linear modes. The
case of a cavity with plane mirrors, described by reduction (3.17), corresponds to the
timiting case where b, > — in (3.16). These results generalize the analysis done in
[32] for the fundamental mode of the cavity.

First, let us note that the reduction (3.15) can be embedded in the more general
transformation [27]

¥ =(1+2)72UN(Z, £) explv=T ¢}z + a6)) (4.1)

where Z =tan"(z) and U'(Z, £) are complex functions satisfying

1 aj
VI UP + ugy+g Uf;’—ﬁgzu‘”—zzl UV +pf|UVE+ 1+ UPPIUM =0
, (4.2)
V-1 UP+ U}?+% U?’—%gluu)—% UD+q[|[ U2+ 1+ n)| UV PIU® =0.

Equations (4.2) describe the nonlinear propagation of two cylindrical waves in a
nonlinear Kerr medium with parabolic refractive index profile. This system has
stationary solutions of the form

UD =) expl—v-1&""b2Z] (4.3)

with f'7(£) satisfying equation (3.16). Thus, transformation (4.1) establishes a link
between radiative-like solution (3.15) and stationary solution (4.3). Since the variational
analysis is more easily tractable on the basis of stationary solutions, we will retain
(4.2) as our basic evolution equation. As an additional result, we will obtain an
approximate analytical description of the quasistationary propagation of (4.1), which
is not without value.

Equation {4.2) can be reformulated as a variational problem with the Lagrangian

A=AV + AP+ 70D (4.4)
where

e 2
v—lI

i i- DYETe i i i i a; i i
A(l)=8 IT[U( )U(Z)ak_ Ut Yk U(Z)]+lU(E)lz+%§2lU{ )l2+?lu( }IZ_%niU( )14 (45)

and
ADD = (14 W)UV UL, (4.6)
n

Equation (4.2) is then derived from the cylindrical Euler-Lagrange equations

3 A 3 8A 1 8A 8A
— —|+= 5|t oo =0 4.7
az[au(zf’*] ag[au‘;’*] EaUY* U™ @)

The essence of the variational approach lies in the choice of the most appropriate
trial functions that describe, as faithfully as possible, the exact self-similar solutions
hehaviour. On the other hand, since we want to obtain analytical results, we have to
restrict our choice to a generic one. We found that a good compromise between
simplicity and accuracy is given by the trial functions

Ut = A,L“"(Tf?) explvV=T &' (¢ + Bi£")] (4.8)
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where parameters A, W,, ¢; and B, are all real functions of the variable Z The choice
of the quadratic phase variation B,£? is a standard one in optical wave propagation
and is necessary for those interested in a description of the quasistationary propagation
[27, 32, 34-36]. Finally, we are reminded that the choice of real functions L*(;), & =
£/ W, is based on the form of the exact localized solutions of (3.16) in the linear limit
7 =0, which are the Laguerre-Gauss polynomials. In the following, we will restrict
ourselves to the first four polynomials, that is

LYY =exp{~¢{i) a=0
Ly =g -7 ==l
(2.} 4 exP[z il 2 a (4.9)
Ly =(1-2¢) exp[-{7] - a =0
L{ = {7 exp[—¢7] a; = £2.

Substituting the ansatz (4.8)-(4.9) in the Lagrangian {4.4) and integrating the
&-variable from 0 to infinity yield the reduced (or averaged) Lagrangian

(Ay= (A + (A + (A (4.10)
where
(A= ATWiga,;+ AIBWiay + Alay,; +4ATBIWiay,

+Afafa4,~+z'AfW‘,-‘az.-—%nA‘.-‘ W?asi (4.11)
and

A"Dy=—n(1+h)AlAla. (4.12)

Throughout the text, the dot means derivative with respect to Z. The coefficients o,
(k=1,...,5) and g are given by

@y = m[L(”]sz df &zf=J‘ [LOPE de,

s )]
[* oo (Y2 20

oy = [Q‘L] & dé; Qy; = J‘ [Lm]zg;"] d¢; (4.13)
Jo L d{ 0

f* oo = § 2 é i
_ tiq4 = W = i e
oy = 1} (LT dé aﬁ"J’a {L (W‘)] [L (Wz)] e

and can be evaluated analytically. Their values are summarized in table 2.
The reduced Euler-Lagrange equations

o [am] o
dZ [5}’1‘2] B Y (4.14)

Table 2. Values of a, (k=1,2,3,4,5) for the first four Laguerre polynomials.

L L, Ly Ly
a, 1/4 1/8 /4 1/3
s 1/8 1/8 3/8 /16
a 1/2 1/4 3/2 1/4
a, 1/4 1/8

a 1/8 1/64 1/16 3/256




2660 L Gagnon

where y; stand for A;, W,, ¢, and B; provide the eight following relations:

S(A
B(A)_O=> W,zﬂp,a“"'B Wia,, + s+ 487 W4a2i+a &4
1

+Zw?a2i_ﬂA? W?“Si_n(1+h)A§—ia6=0 (4~15)
S{A
HA) =0=>A?W7}= E, = constants (4.16)
by,
S{A
6(B> 0= W, =4B,W, (4.17)
3(A>_ 2 4 4
SW. 0=>2W,gp,a,,+4BW a5+ 16 BT Whay + Wias,

22 2 daﬁ
_WA, W,as,—ﬂ(1+h)A3_, dW 0 (4-18)

where the constants E; are proportional to the energy Z; in each wave through
27 oo 0
2,.=J J' | N2r dr de:ZarJ |UP1*¢ d¢ = 2may E;. (4.19)
0 L] 0

Note that there is no energy exchange between the waves during the propagation.
Relations (4.15)-(4.18) give an approximate description of the evolution of the fields
U around the stationary solution (4.3) of (4.2). We will not atternpt to solve them
explicitly but rather restrict cur analysis to the stationary case.

The determination and classification of localized non-singular solutions of (3.16)
are then reduced to the determination of the relations between the amplitudes A, (or
E;) and widths W; in (4.8) when A; and W; are assumed constanis, ¢; = —bZ and
B; =0. Substituting these values in (4.15), (4.16) and (4.18), one obtains

(1+h) da .
E+ W 2(25_“’:‘(]“2 E3f,-=a—5i[2a3,»+2a;‘-’a4,-—%Wfaz,.] (4.20)
and

1 2 1 4 E3_.4,
bi = 5| @it ajoy +3Wiay —nEas;—n(1+h) ag | (4.21)
a, Wi i

Retations {4.20) and {4.21) are parametric equations that give E; and b; as a function
of the widths W, and W, of the approximate localized solutions of (3.16). We solved
them for various values of W, and W,.

Figure 2 shows the normalized energy § =(2+h)X, in each wave as a function of
b for two identical beams, i.e. A;=A,, W, =W, and b, =b,=b. The curve numbers
refer to the mode number in (4.9). The signs + and — refer to a self-focusing medium
{n=1) and a self-defocusing medium (7 = —1) respectively. The points b=1,2,3 ...
and §=0 correspond to the linear limit 5 - 0. The case described by curve 17 was
studied in [32]. The energy values at b-» —c0 are 4, 167, 24, 327 and correspond
approximately to the energy of the first self-trapping solutions of (1.1} (no z-dependence
in the amplitudes) [41-43]. The fundamental self-trapping solution is known to be
unstable and eventually to collapse in a self-focusing process [38-40]. We suspect a
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Figure 2. Normalized energy §=(2+ k) I, in each wave for two identical beams. Curve
numbers referto L,, ..., L, respectively while signs + and — stand for g=1and n=-1.
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Figure 3. Energies X, and X, as a function of b, (a) and b; (b) for two beams in the
fundamental mode with =1, h=1, W, =0.928 and 0.695= W, = 1.209. Intensity profile
of the first (¢} and second (d) beam for the parameter width W, =0.85.
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Figure 4. Energies Z, and %, as a function of b, (a) and b, (b) for two beams in the
fundamental mode with n=—1, h =1, W, =2.489 and 2.240< W, = 2.970.
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Figure 5. Energies £, and %, as a function of b, (a} and b, (b) for the first beam in the
fundamental mode and the second beam in the second mode with =1, h =1, W, =1.520
and 1.387= W, =<1.520. Intensity profiles of the first (¢} and second (d) beam for the
parameter width w,=1.43.
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similar behaviour for the higher-order self-trapping solutions [47]. But here, we are
more interested in the self-similar solutions which exist for energies below the critical
self-trapping energies.

In addition to the above identical localized self-similar solutions, there is a relatively
large set of solutions where W,# W,. This physically corresponds to the case where
the net flux within the cavity does not vanish [32]. For example, full curves on figures
3 and 4 show the energies £, and X, as a function of b, and b, for two beams in the
fundamental mode with i = 1. For comparison, the iong broken curve give the energy
for the case W)= W, while the short broken curve gives the energy for h=—1 (no
nonlinear coupling). In figure 3 (% =1), we have chosen W, =0.928 which leads to
0.695< W,=<1.209 and provides the possible self-similar solutions centred around
by =b;=—2. The points on the full curves correspond to W,;=1.209. As a typical
example, we give the intensity profiles of the beams for W, =0.85 on figures 3{c) and
(d). Infigure 4 (3 =—1), we have set W; =2.489 and 2.240 < W, < 2.970 that correspond
to a set of values centred around b, = b, = 2. Here, the points on the full curves are
for W,=2.240. An interesting point that comes out from figures 3 and 4 is that two
different solutions exist for given parameters b, which could provides the onset for
bistability.

The most significant result of our analysis is the possible coexistence of self-similar

beams having different modal profiles. For example, full curves on figure 5 show the

energy values of the beams when the first is in the fundamental mode and the second
in the second mode with n =1, W, =1.520 and 1.387 < W, = 1.520. The broken curves
correspond to the energy in each beam without nonlinear coupling (h = —1). The points
on the full curve are the limiting case W, =1.387. A typical intensity profile is also
shown on figures 5(¢) and (d) for parameter width W,=1.45,

The above results are only few examples from the possible self-similar nonlinear
structures predicted by {1.1). It seems that the ‘nonlinear superposition’ of two beams
having different modal profiles is always possible within a certain parameter range.

5. Discussion of the (14 1)-dimensional case

The (1+1)-dimensionai version of {i.1) {no y-dependence for exampie) has the famous
property of being completely integrable for h=0. It is identified as the Manakov
equation and can be solved by the inverse scattering transform [48, 49]. This model is
of particular interest in wave propagation in optical fibres (with x being a time-like
variable). A general analysis of the travelling wave solutions for that case has been
carried out in [50]. Unfortunately, this reduction of dimension breaks the conformal
symmetry property present in the (2+ 1)-dimensional case. A consequence is the loss
of the self-similar solutions (3.16). However, if the |¢”|® terms are replaced by (i)
(1+ 27212 or by (ii} [¢""|* in (1.1) then a point-symmetry generated by the vector
field

V=(14z})P,+zxP, + zyP, - ix* (M -+ M)

_ LW o+ ¢ P9 e+ cc)+ b MDY + b M@ (5.1)
does lead to an equivalent reduction

O =N+ exply=T £ (4267~ by tan™'2)]

£=x(1+29)" 5.2)
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where f7(¢£) satisfy
(b= gl P+ A+ WP O =0, (5.3}

The first case is still physically interesting from a phenomenological point of view as
it simply redistributes the nonlinearity along the z-coordinate. Nonlinear modal proper-
ties that are equivalent to those described in section 4 do exist for the first case and
are qualitatively the same as for the (2+1)-dimensional case except that the modal
structure of the self-similar solutions are approximately given by the Hermite-Gauss
polynomials [27]. In fact, the self-similar solutions (5.2) can be embedded into

Y= (1+27)7UNZ, &) exp[iV=T &7z

§2=x2(1+22)—l (5-4)

where U are the stationary solutions of
VUL HUREUN U O+ mUTFIU =0
5.5

6\/_ U(2)+ U(2J 4&2 U(2]+ ,n[l U(2}|2+ (l + h)l U(l)lz] U(Z),_.O

Equation (5.5) derives from the same Lagrangian (4.4)-(4.6) with a, =0 and under the
Euler-Lagrange equations

a{ oA d [ _aA 3A ‘
— | —=m = | = | = =0 5.6
az[au‘z”*] ag[aug’*] U 6)

We can choose the same form as in (4.8) for the trial functions except that the
Laguerre-(Gauss polynomials L are replaced by the Hermite-Gauss polynomial H. The
reduced Lagrangian and its corresponding Euler-Lagrange equations then lead to
relations similar to (4.14j-(4.18), that is

W?‘f"iclr’ + B.'W?Czi toegt 4B; W?Czs +3 W?CZI' - WA? Wicy

—p(1+h)Al_ Wie; =0 (5.7)
A?W, = E, = constants {5.8)
W, =4B.W, (5.9)

W2§°101.+3BW 21— 5'3;'*123? W?Cz;' +%W?CZE_%”A$W:2'CH
—n(l+h)A; ‘dw =0 (5.10)

where the constants E; are related to X; through
3, =J 0 dx =j U dg= e, E,. (5.11)

The coefficients ¢, (k=1,...,4) and ¢, are given by

o ()92 o«
[%] dZ; C41=J' [H'"1dg, (5.12)

T

r [H7dg, Cas =j [H9TF¢de

—00



Self-similar solutions of coupled nonlinear Schrédinger equations 2665

and evaluated analytically for the first two polynomials in tabte 3 (H, and H, are
identical in form to L, and L,).

Finally, the relations that determine the approximate parameter range of the
localized self-similar solutions are

2(1+h) dcs] .
E;+ - W— = 2 1
c4jW3_'- [85 dm E3 ¢ c41'“/i [4C3l WiCZJ] (5 3)
and
Ly W,
b= W [03.-+3W,-c:.~— nE;Wie,, —n(1 +h)E3_,.K Cs]- (5.14)

As (4.20) and (4.21) relations (5.13) and (5.14) are parametric equations that give
E; and b; as a function of the parameters widths W, and W,. For instance, figure 6
shows the normalized energy $=(2+h) X, in each wave as a function of b for two
identical beams. The notation is the same as in figure 2. The only major difference
from figure 1 lies in the unsaturating behaviour of § at b~ —o0, All other predictions
and behaviours discussed for the (2+1)-dimensional case are also applicable here.
Furthermore, because it is less demanding in computer time, this (14 1)-dimensional
model can be useful to those interested in a numerical study of the self-similar solutions
behaviour.

When the coupling terms in the (1 + 1)-dimensional model are a quartic nonlinearity
as in the second example, the field equations do not derive from a Lagrangian, thus,
the approximate variational method above cannot be applied.

Table 3. Vaiues of ¢, (k=1,2,3,4) for the first two Hermite polynomials.

H, H,
o Va2 (1/4W w72
€3 {1/41/m/2 (3/16 W 7w /2
€ vaj2 (3/40a/2
€y NFr (3/64V7 /4

2+

1+

-2 -1

b

Figure 6. Normalized energy S =(2+h) X, in each wave for two identical beams. Curve
numbers refer to H, and H, respectively while signs + and — referto n=1and n=—1.
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6. Conclusions

We have given the point-symmetry properties of the set of coupied nonlinear
Schradinger equations (1.1). The symmetry algebra g was shown to be a direct sum
between the 2p Schrodinger algebra sch(2) and a constant change of phase generatot.
We have used a previous classification in conjugacy classes of the subalgebras of sch(2)
to help in the determination of subalgebras of g. We have applied the symmetry
reduction method for some of these subalgebras that lead to generic (2+1)-dimensional
reductions. These solutions are of particular interest in the field of transverse effects
in nonlinear optics.

As a physical application, we have obtained approximate anatytical expressions
for the localized self-similar solutions of the equation describing the modal properties
of a nonlinear Fabry-Perot interferometer with spherical mirrors. Our analysis was
based on a variational method that has been applied in various recent studies in optics.
This permitted us to classify all localized solutions of the reduced equations in terms
of their energies and widths. These solutions appear to have a well defined nonlinear
modal structure given approximately by the Laguerre-Gauss polynomials. They exist
for self-focusing as well as self-defocusing media.

The results of this study are indicative of a large set of self-similar nonlinear
coherent structures predicted by the models (1.1). The coexistence of these self-similar
coupled waves can be of interest in the study of various nonlinear systems and in
particular for the transverse instability of counterpropagating optical beams due to
transverse effects [4]. Many important questions remain to be addressed. For instance,
the stability and bistability properties of the nonlinear modal structures described in
section 4 have to be analysed (see, for instance, the recent resuits in [51]). This of
course necessitates more exact results about the reduced opes. We plan to go back to
that issue in the near future.
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